


# **USB-IO**

USB board to control up to

- 8 digital optically-isolated inputs
- 8 digital relay outputs
- 2 analog inputs

# Software User Manual



ATTENTION: USB-IO board are delicate electronic devices, handle with care avoid electrostatic discharge. Hold the board by the edges to avoid touching the integrated circuits on it.



# Version 1.0 - December 2013



### USB-IO Concept

USB-IO interface adapter allows connecting various hardware devices to your PC. Easy installation and plugand-play support makes USB-IO board an ideal solution to add USB interface to your HW.

The USB-IO has 8 SPDT relays outputs, 8 optically isolated inputs and 2 analog inputs. This device has many applications and we couldn't possibly list them all, but here are a few examples: The relay can be used to turn on and off a sprinkler system, automating a hot tub, or low-voltage lights. The inputs can be used to monitor magnetic window switches or garage door position. The analog inputs can be used to monitor some analog levels.

Helpful the provided demonstration software, connect the USB-IO to a USB host port and control IO's is really simple. Or with the Helpful provided Class file for Visual Studio, develop your own application.

## USB-IO Caracteristics

- Full HID USB2.0 compliant; driver natively include under Windows or Linux OS
- High-Speed USB 2.0 device, USB 1.1 compatible
- 8 Relay output's 10A / 250VAC
- 8 optically isolated input's 0/10VDC User modifiable\*
- 2 x 10 bits analog input's 0/10VDC User modifiable\*
- 1 Kbytes of user Flash memory
- Demonstration software and DLL are available FREE OF CHARGES (Windows 2000 / XP / VISTA / Seven) – Visual Studio - Framework .NET 4.0 © MICROSOFT
- PCB dimensions : 150x83 mm RoHS compliant
- Weight : 181 grams

\* need solders tools to change SMD components

### Support

Commercial department : <u>commercial@eko-fpga.com</u>

WEB Site : <u>http://www.eko-fpga.com</u>

Technical department : technique@eko-fpga.com

The board is adaptable according to your specifications. If the volume of your application requires it, do not hesitate to contact us.

If you experience any problems with this manual or just want to give us some feedback, please email us at: **technique@eko-fpga.com**. Please detail any errors you find and include your mailing address so that we can send you any manual updates.



# TABLE OF CONTENTS

| 1 | Ρ           | reface                 | 5   |
|---|-------------|------------------------|-----|
| 2 | S           | oftware installation   | 5   |
| 3 | S           | oftware description    | 6   |
| - | 3.1         | INPUTS/OUTPUTS tab     | 6   |
| 3 | 3.2         | Commands tab           | 7   |
|   | 3.3         | DIGITAL Pooling/IT tab | 8   |
|   | 3.4         | ANALOG Pooling/IT tab  | 9   |
|   | 3.5         | Scheduler tab          | 10  |
| 4 | R           | egisters               | .11 |
| 2 | <b>1</b> .1 | Mapping Register       | .11 |

Aucune entrée de table d'illustration n'a été trouvée.



## GLOSSARY

| USB-IO   | : USB IO controller board |
|----------|---------------------------|
| \$xx     | : HEXADECIMAL notation    |
| %xxxxxxx | : BINARY notation         |

### **DOCUMENT REVISION HISTORY**

| Paragraphs | Rev. | Date     | Modifications                  |
|------------|------|----------|--------------------------------|
|            | 1.0  | 02.12.13 | First edition of the document. |
|            |      |          |                                |
|            |      |          |                                |
|            |      |          |                                |
|            |      |          |                                |
|            |      |          |                                |
|            |      |          |                                |

**NOTA**: all the pages carry the index corresponding to their edition even if their contents were not modified.



# **1** Preface

USB-IO differs from most of other low-cost adapter by the event-driven interface. It means that the USB-IO adapter can notify your PC software immediately after the input value has changed. The event-driven interface is very flexible. The conditions of an event generation can be configured for every USB-IO module independently. For example, ADC module can send events when the voltage on the analog input descends below predefined value or rises above any other else.

Would you like to analyze changes over time? No problem, USB-IO adapter can send events periodically with the predefined repeat interval. The polling interface is supported by the USB-IO adapter.

This is a fully assembled and tested unit. The board requires external power of 6-8VDC / 500mA.

The relays can control loads of up to 10 amps and 240VAC. Please see below for more detailed specifications.

USB-IO uses the Human Interface Device (HID) USB profile. It does not require USB drivers and so is immediately Plug-and-Play with present and future Windows©, Linux© and Mac© operating systems.

Many links are available on the Web. You can start by:

- <u>http://www.lvr.com/hidpage.htm</u>
- <u>http://labs.mike-obrien.net/Document.aspx?id=hidlibrary</u>

Control software and class file, writing in VB.NET language (Framework .NET 4.0), is free of charge:

You can download the demonstration software on http://www.eko-fgpa.com

# 2 Software installation

These paragraphs are intended to detail the software installation steps as well as describe what is being installed.

The software provided with this board need to be downloading and *must be installing onto your hard disk prior to use.* To do this, perform the following steps as appropriate for your operating system.

#### Win2000/XP/Vista/Seven

- a. download the install file from <a href="http://www.eko-fpga.com">http://www.eko-fpga.com</a>
- b. run the installation
- c. Follow the on-screen prompts to install the software for this board.

If you don't have the Microsoft .NET4.0 Framework already installed, the installation software will try to download it.

The demonstration software, sources project (VB.NET Framework 4.0) and DLL are provided as free of charges.



# **3** Software description

This software is provided as simple example to control the inputs / outputs of the board. A DLL is provided to help developers to design their own specific control software.

### 3.1 INPUTS/OUTPUTS tab

| DIGITAL outputs         Test Relays         Write 1 Relay         K1 ▼ ON ▼         K1 ▼ ON ▼         K1 ♥ ON ▼         K1 № Clear ALL Relays         Write 1 Relays         0x         AA         Read 8 DIG Inputs         Read ANA0         0x         mV         10000         Ohms (R1) | USB_IO control V2.0   |                |                  |                   |           |             |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|------------------|-------------------|-----------|-------------|-----------|
| DIGITAL outputs       Clear ALL Relays         Write 1 Relay       K1 ▼ ON ▼ K1 K2 K3 K4 K5 K6 K7 K8         Write 8 Relays       0x AA         DIGITAL Inputs         Read 8 DIG Inputs         Read ANA0       0x         MV       10000 Ohms (R1)                                                                                                                 | E                     | <              | <b>_</b>         | 11/12/2013 2      | 2:52:42   | ADR board   |           |
| Test Relays       Clear ALL Relays         Write 1 Relay       K1 • ON • K1 K2 K3 K4 K5 K6 K7 K8         Write 8 Relays       0x AA         DIGITAL Inputs         Read 8 DIG Inputs         Read ANAO         0x         mV         10000         Ohms (R1)                                                                                                         | NPUTS / OUTPUTS       | Commands DIG   | iITAL Pooling/IT | ANALOG Pooling/IT | Scheduler | Timer About | t         |
| Write 1 Relay       K1 • ON •       K1 K2 K3 K4 K5 K6 K7 K8         Write 8 Relays       0x       AA       Refresh         DIGITAL Inputs       Read 8 DIG Inputs       0x         ANALOG Inputs       Read ANAO       0x       mV         10000       Ohms (R1)                                                                                                     | DIGITAL outputs       |                |                  |                   |           |             |           |
| Write 8 Relays     0x     AA     Refresh       DIGITAL Inputs     Read 8 DIG Inputs     0x       ANALOG Inputs     0x     mV     10000       Bead ANAO     0x     mV     10000                                                                                                                                                                                       | Test Relays           |                |                  |                   | Clear ALL | Relays      |           |
| DIGITAL Inputs          Read 8 DIG Inputs       0x         ANALOG Inputs       0x         Read ANA0       0x         0x       10000         0hms (R1)                                                                                                                                                                                                                | Write 1 Relay         | К1             | ▼ ON ▼           | K1 K2 H           | <3 K4     | K5 K6       | ) K7 K8   |
| Read 8 DIG Inputs     0x       ANALOG Inputs     0x       Read ANA0     0x       0x     10000       0hms (R1)                                                                                                                                                                                                                                                        | Write 8 Relays        | 0x .           | AA.              |                   | Refre     | esh         |           |
| Read 8 DIG Inputs     0x       ANALOG Inputs     0x       Read ANA0     0x       0x     10000       0hms (R1)                                                                                                                                                                                                                                                        | DIGITAL Inputs        |                |                  |                   |           |             |           |
| Read ANA0         0x         mV         10000         0hms (R1)                                                                                                                                                                                                                                                                                                      | -                     | uts Ox         |                  |                   |           |             |           |
|                                                                                                                                                                                                                                                                                                                                                                      | ANALOG Inputs         |                |                  |                   |           |             |           |
|                                                                                                                                                                                                                                                                                                                                                                      | Read ANA0             | 0x             | m                | V                 |           | 10000       | Ohms (R1) |
| Read ANA1 0x 4990 Uhms (H2)                                                                                                                                                                                                                                                                                                                                          | Read ANA1             | 0x             |                  |                   |           | 4990        | Ohms (R2) |
|                                                                                                                                                                                                                                                                                                                                                                      |                       |                |                  |                   |           |             |           |
| JSB_IO is Offline 🜑 RX data 🌑 TX data                                                                                                                                                                                                                                                                                                                                | ISB IO is Offline 👄 F | 8X data 🙆 TX c | lata             |                   |           |             |           |

From this tab, you can read and write all inputs / outputs.

The DIGITAL outputs area demonstrate access to unit output or to all outputs with only one command.

The DIGITAL inputs area is an HEXA value, bit coded. 0x11 means input 0 and 4 : ON

The ANALOG inputs area is 10 bits HEXA value. If you set up correctly the R1/R2 resistors divider, then the ANA0 value is converted in milli-Volts value too.



### 3.2 Commands tab

| E                |                             | 11/12/2013 2      | 2:53:40 ADR    | board FF             |
|------------------|-----------------------------|-------------------|----------------|----------------------|
| INPUTS / OUTPUTS | Commands DIGITAL Pooling/IT | ANALOG Pooling/IT | Scheduler Time | r About              |
|                  |                             | Address           | Data           |                      |
|                  | Read Register               | 00                | 0x             |                      |
|                  | Write Register              | 00                | FF             |                      |
|                  | Read Flash                  | 0123              | 0x             |                      |
|                  | Write Flash                 | 0123              | AA             |                      |
|                  | Read ID                     | ID                |                |                      |
|                  |                             | Reset Fac         | tory settings  | Enable Reset Factory |
|                  |                             | RESE              | T Board        |                      |
|                  |                             |                   |                |                      |

From this tab, you can read and write all registers and FLASH user area.

Have a look to §4 for the mapping registers array.

All values are HEX encoded.

If you check the "Enable Reset Factory" then you click on "Reset Factory settings" button, all settings will be overridden by the original factory configuration.



### 3.3 DIGITAL Pooling/IT tab

| 🧐 USB_IO control V2.0           |                       |                      |                 |          | -   |
|---------------------------------|-----------------------|----------------------|-----------------|----------|-----|
| EK                              | <b>S</b>              | 11/12/2013 2         | 2:53:46 ADR     | board FF |     |
| INPUTS / OUTPUTS Commands       | DIGITAL Pooling/IT    | ANALOG Pooling/IT    | Scheduler Timer | r About  |     |
| DIGITAL inputs Enable DIG_IT    | 0x<br>DIG_IN          |                      |                 |          |     |
| Enable POOL DIG<br>inputs       | 123 n<br>POOL_DIG_TIM | ns Ox<br>ERms DIG_IN |                 |          |     |
| 🗣 USB_IO is Offline 🌑 RX data 🌑 | TX data               |                      |                 |          |     |
|                                 | r A uata              |                      |                 |          | ,di |

From this tab, you can play with the DIGITAL interrupts features of the board. Two interrupts modes are available :

- edge interrupts : on any rising or falling edge, on any digital input, interrupt is fired then a read is executed
- pooling timer : on timer tick, interrupt is fired then a read is executed



### 3.4 ANALOG Pooling/IT tab

|           | ontrol V2.0 |           | <b></b> ^          |                   |           |          |       |            |  |
|-----------|-------------|-----------|--------------------|-------------------|-----------|----------|-------|------------|--|
|           | 1404        |           | Chulter            | 11/12/2           |           |          |       |            |  |
| NPUTS /   | OUTPUTS     | Commands  | DIGITAL Pooling/IT | ANALUG POO        | ling/11 S | cheduler | Timer | About      |  |
| ANALO     | OG intputs  |           |                    |                   |           |          |       |            |  |
|           | Enable TH # | ANAO      | 0x 80<br>TH low    | 0x 200<br>TH high | Оx        |          |       |            |  |
|           | Enable TH / | ANA1      | 0x 30<br>TH low    | 0x 100<br>TH high | 0x        |          |       |            |  |
|           |             |           |                    |                   |           |          |       |            |  |
| ſ         | Enable PC   |           |                    |                   |           |          |       | 0x         |  |
|           | ANA0 inp    | uts       | PoolTime 0         | 1234 ms           |           |          |       |            |  |
| ſ         | Enable PC   |           |                    |                   |           |          |       | Ox         |  |
| -         | ANA1 inp    | uts       | PoolTime 1         | 150 ms            |           |          |       | TE - 16033 |  |
|           |             |           |                    |                   |           |          |       |            |  |
| JSB IO is | Offline 🜰   | RX data 🔵 | TX data            |                   |           |          |       |            |  |

From this tab, you can play with the ANALOG interrupts features of the board. Two interrupts modes are available :

- threshold interrupts : set a low and up threshold, armed the board by enabling the threshold, then an interrupt is fired when a threshold is done.
- pooling timer : on timer tick, interrupt is fired then a read is executed

Each analog input has his own Threshold and Timer features.

Warning : Read carefully the USB\_IO programming manual and the analog inputs characteristics.

#### **DO NOT REVERSE POLARITY - DO NOT EXCED 3.6V on ANx cpu inputs.**

USB\_IO Controller board Software User Manual



#### 3.5 Scheduler tab

|          | E         | =      | <      |          | C      | -         | Č        | 11/12/2        | 2013 22:5   | 4:25 ADR     | board FF   | 0        |
|----------|-----------|--------|--------|----------|--------|-----------|----------|----------------|-------------|--------------|------------|----------|
| PUTS     | / OUTF    | PUTS   | Com    | nmands   | DIG    | iITAL Poo | oling/IT | ANALOG Po      | oling/IT Sc | heduler Time | r About    |          |
| 4        | 3         | décen  | nbre   | 2013     |        | •         |          | Day            | Date        | Time         | Relay      | State    |
| lun.     | mar. r    | mer.   | ieu.   | ven.     | sam.   | dim       |          |                |             |              |            |          |
| 25       | 26        | 27     | 28     | 29       | 30     | 1         |          |                |             |              |            |          |
| 2        | 3         | 4      | 5      | 6        | 7      | 8         |          |                |             |              |            |          |
| 9        |           |        | 12     | 13       | 14     | 15        |          |                |             |              |            |          |
| 16       |           |        | 19     | 20       | 21     | 22        |          |                |             |              |            |          |
| 23       | 24        | 25     | 26     | 27       | 28     | 29        |          |                |             |              |            |          |
| 30       | 31        | 1      | 2      | 3        | 4      | 5         |          |                |             |              |            |          |
|          | $\square$ | Aujou  | urd'h  | ui : 11, | /12/20 | 13        |          |                |             |              |            |          |
| vich da  | iy to sel | ect ?  | Dim    | anche    |        | 8         |          |                |             |              |            |          |
| vich tim | ne to sel | lect ? | 22:5   | i4:24    |        |           |          |                |             |              |            |          |
| vich rel | ay?       | wich s | tate ? | 2        |        |           | [ [      | elete line     | Save        | Scheduler    | Enable S   | cheduler |
| K1       |           | 10     | • ۱    |          | Add    | ines      | De       | lete all lines | Open        | Scheduler    | LabelPtrSc | heduler  |
|          |           |        |        |          |        |           |          |                |             |              |            |          |

From this tab, you can play with the Scheduler features of the PC software.



# **4** Registers

### 4.1 Mapping Register

| @    | Name             | Access | Factory<br>settings |                                                                     |
|------|------------------|--------|---------------------|---------------------------------------------------------------------|
| 0x00 | ADDRESS          | R/W    | 0xFF                | Address of the USB-IO controller - FUTUR USE                        |
| 0,00 | reserved         |        | UXIT                |                                                                     |
| 0x10 | CONFIG DIG       | R/W    | 0x00                | Configuration bits for the DIGITALS IO's                            |
| 0/10 |                  | 1911   | 0,00                |                                                                     |
|      | reserved         |        |                     |                                                                     |
| 0x20 | OUTPUTS REL      | R/W    | 0x00                | States of the 8 relay outputs                                       |
|      |                  |        |                     |                                                                     |
| 0x22 | POOL_DIG_TIMERH  | R/W    | 0x00                | Set the pooling time of digitals inputs MSB byte                    |
| 0x23 | POOL_DIG_TIMERM  | R/W    | 0x00                | Set the pooling time of digitals inputs Middle byte                 |
| 0x24 | POOL_DIG_TIMERL  | R/W    | 0x64                | Set the pooling time of digitals inputs LSB byte (100 milliseconds) |
|      | reserved         |        |                     |                                                                     |
| 0x30 | CONFIG_ANA       | R/W    | 0x00                | Configuration bits for the ANALOGS inputs                           |
|      |                  |        |                     |                                                                     |
|      | THH_ANA0         | R/W    | 0x02                | Threshold High for the analog0 input – MSB                          |
| 0x32 | THL_ANA0         | R/W    | 0x00                | Threshold Low for the analog0 input – LSB                           |
| 0x33 | TLH_ANA0         | R/W    | 0x00                | Threshold Low for the analog0 input – MSB                           |
| 0x34 | TLL_ANA0         | R/W    | 0x80                | Threshold Low for the analog0 input – LSB                           |
|      |                  |        |                     |                                                                     |
|      | THH_ANA1         | R/W    | 0x01                | Threshold High for the analog1 input – MSB                          |
|      | THL_ANA1         | R/W    | 0x00                | Threshold High for the analog1 input – LSB                          |
| 0x37 | TLH_ANA1         | R/W    | 0x00                | Threshold Low for the analog1 input – MSB                           |
| 0x38 | TLL_ANA1         | R/W    | 0x30                | Threshold Low for the analog1 input – LSB                           |
|      |                  |        |                     |                                                                     |
| 0x3C | POOL_ANA0_TIMERH | R/W    | 0x00                | Set the pooling time of analog inputs MSB byte                      |
| 0x3D | POOL_ANA0_TIMERM | R/W    | 0x03                | Set the pooling time of analog inputs Middle byte                   |
| 0x3E | POOL_ANA0_TIMERL | R/W    | 0xE8                | Set the pooling time of analog inputs LSB byte (1000 milliseconds)  |
| 0x3F | POOL_ANA1_TIMERH | R/W    | 0x00                | Set the pooling time of analog inputs MSB byte                      |
| 0x40 | POOL_ANA1_TIMERM | R/W    | 0x03                | Set the pooling time of analog inputs Middle byte                   |
| 0x41 | POOL_ANA1_TIMERL | R/W    | 0xE8                | Set the pooling time of analog inputs LSB byte (1000 milliseconds)  |
|      | reserved         |        |                     |                                                                     |
| 0xFF | reserved         |        |                     |                                                                     |

For detailed registers and commands descriptions, please have a look to the "USB-IO Manual Programming" document.



END OF DOCUMENT